Entropy production in ticking clocks: Fundamental limits of timekeeping

Julian Arnold, Mischa P. Woods

Ticking clock model

A ticking clock is a timekeeping device that **autonomously** outputs time information in the form of individual ticks

- modelled as a bipartite quantum system ρ_{CR} composed of clockwork C and register R living in $\mathcal{H}_{\mathrm{C}} \otimes \mathcal{H}_{\mathrm{R}}$ with $\dim(\mathcal{H}_{\mathrm{C}}) = d \text{ and } \dim(\mathcal{H}_{\mathrm{R}}) = N_{\mathrm{T}} + 1$
 - register states $\{|0\rangle_{\rm R}, |1\rangle_{\rm R}, \dots, |N_{\rm T}\rangle_{\rm R}\}$ represent no tick, 1 tick, . . . , and $N_{\rm T}$ ticks having occurred
 - $\rho_{\rm CR}(0) = \rho_{\rm C}^0 \otimes |0\rangle \langle 0|_{\rm R}$ - $\rho_{\mathrm{CR}}(t) = \sum_{k=0}^{N_{\mathrm{T}}} \tilde{\rho}_{\mathrm{C}}^{(k)}(t) \otimes |k\rangle \langle k|_{\mathrm{R}}$

- dynamics are given by a family of CPTP maps $\mathcal{M}_{CR\to CR}^t(\cdot) = e^{\mathcal{L}_{CR}t}(\cdot)$ parametrized by coordinate time $t \ge 0$
 - Lindbladian $\mathcal{L}_{CR}(\cdot) = -i[\bar{H}, (\cdot)] + \sum_{j} \bar{L}_{j}(\cdot)\bar{L}_{j}^{\dagger} \frac{1}{2}\{\bar{L}_{j}^{\dagger}\bar{L}_{j}, (\cdot)\} + \bar{J}_{j}(\cdot)\bar{J}_{j}^{\dagger} \frac{1}{2}\{\bar{J}_{j}^{\dagger}\bar{J}_{j}, (\cdot)\}, \text{ where } \bar{H} = H \otimes \mathbb{1}_{R}, \bar{L}_{j} = L_{j} \otimes \mathbb{1}_{R}, \bar{L}_{j} \otimes \mathbb{1}_{R}, \bar{L}_{j} = L_{j} \otimes \mathbb{1}_{R}, \bar{L}_{j} \otimes \mathbb{1}_$ $\overline{J}_i = J_i \otimes O_{\mathrm{R}}$ with $O_{\mathrm{R}} = |1\rangle \langle 0|_{\mathrm{R}} + |2\rangle \langle 1|_{\mathrm{R}} + \cdots + |N_{\mathrm{T}}\rangle \langle N_{\mathrm{T}} - 1|_{\mathrm{R}}$

Example: Ladder ticking clock

Most accurate classical clock achieving $R_k = kR_1$ with $R_1 = d$ via reset

- classical \Leftrightarrow clockwork remains incoherent $\rho_{\rm C}(t) = \sum_{j} p_j(t) |j\rangle \langle j|_{\rm C}$
- reset $\Leftrightarrow C_{\text{tick}}(\rho_{\text{C}}) = \rho_{\text{C}}^0 \ \forall \rho_{\text{C}}$, where $\mathcal{C}_{\text{tick}}(\cdot) = \sum_{i} J_{i}(\cdot) J_{i}^{\dagger}$

Quantum reset clocks can achieve a higher accuracy $R_k = kR_1$ with $R_1 \approx d^2$

ullet

0>

Measure of accuracy

based on delay functions $\{\tau^{(k)}(t)\}_{k=1}^{N_{\mathrm{T}}}$

• probability that (k - 1) ticks occur during [0, t) and kth tick occurs during $[t, t + \delta t]$ is $\delta t \cdot \tau^{(k)}(t)$ with $\delta t > 0$

 $\tau^{(k)}$

• accuracy of kth tick is $R_k = \mu_k^2 / \sigma_k^2$

For ladder ticking clock:

Measure of entropy production

 $\Sigma_k = S(\rho_{CP}^{(b,k)})$ quantifies exchanged information between ticking clock and its environment during the *k*th tick

• entropy is **observer-dependent** \Rightarrow relevant observer (B) only has knowledge about ticks (not coordinate time *t* itself)

Relationship between accuracy and entropy production

Vanishing entropy production per tick can be achieved by

• classical reset clock exhibiting Poissonian tick statistics with $R_1 = 1$

Every classical ticking clock must produce a minimal amount of entropy per tick which increases with increasing accuracy

1.25
$$\sum_{1 \max} (d = 4) = \ln(4)$$

-
$$H = 0$$
, $L_j = 0 \forall j$, $J = \sqrt{\lambda} \mathbb{1}$, and $\rho_{\rm C}^0 = |\Psi\rangle \langle \Psi|_{\rm C}$

- "quasi-ideal" quantum reset clock with $R_1 \approx d^2 \rightarrow \infty$
 - $H \neq 0$, $L_i = 0 \forall j$, $J_i \neq 0 \forall j$, and $\rho_{\rm C}^0 = |\Psi\rangle \langle \Psi|_{\rm C}$

 \Rightarrow proof crucially relies on vanishing no-tick generators $\{L_i\}$ Note: Classical clocks with $L_i = 0 \forall j$ achieve maximal accuracy of $R_1 = 1$

FNSNF

Swiss National Science Foundation

References

[P. Erker *et al.*, Phy. Rev. X 7, 031022 (2017)] [M. P. Woods, Quantum 5, 381 (2021)] [M. P. Woods *et al.*, PRX Quantum **3**, 010319 (2022)]

Contacts

julian.arnold@unibas.ch mischa.woods@gmail.com Acknowledgments

