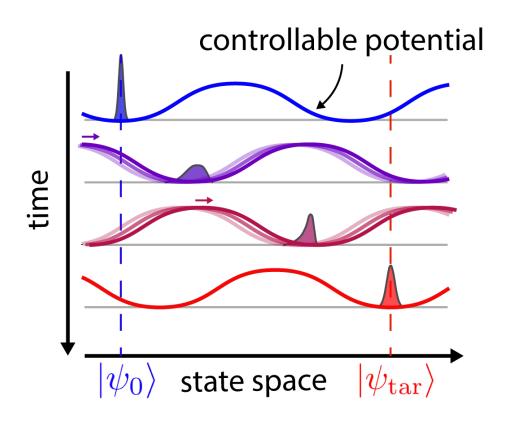
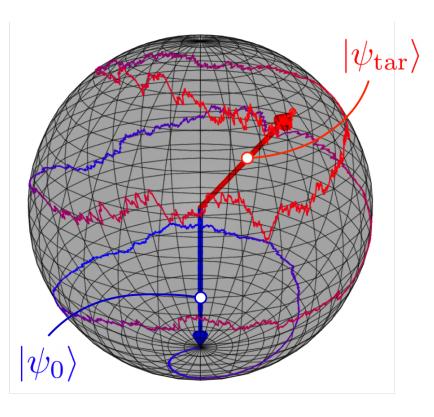
Sum-of-Squares Bounds for Quantum Optimal Control

Flemming Holtorf, F. Schäfer, J. Arnold, C. Rackauckas, A. Edelman

Relevance

The speed at which quantum states can evolve and the accuracy with which they can be prepared in the presence of noise put a limit on the capabilities of quantum information technology. Quantifying this limit is thus crucial for the design of quantum devices and the evaluation of their potential.





Example – Quantum Brachistochrone Problem

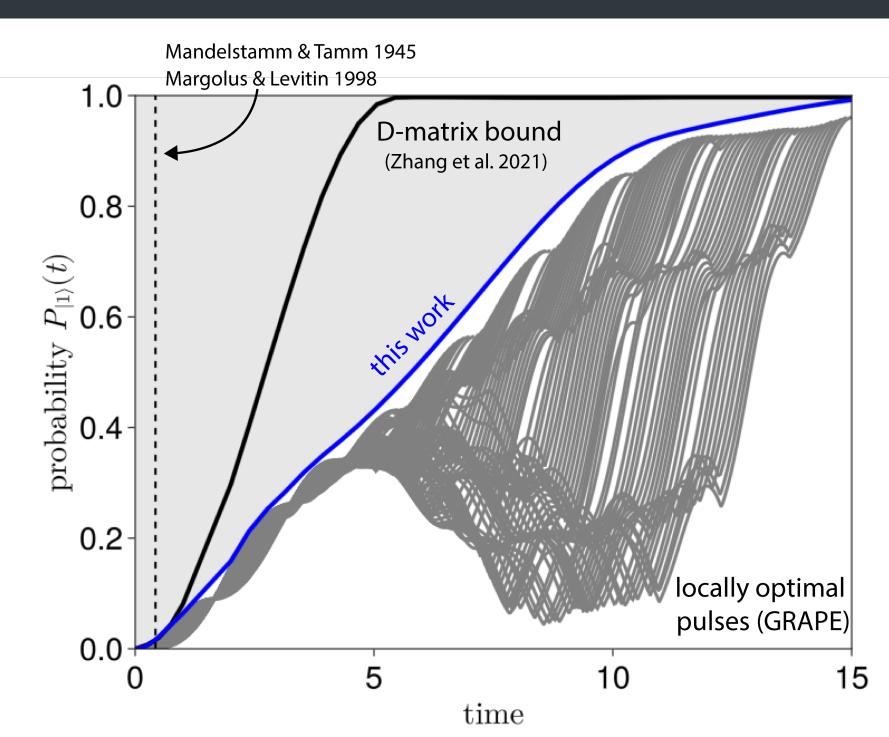
Given a quantum system, what is the minimal time to evolve its ground state $|\psi_0\rangle$ to a target state $|\psi_{tar}\rangle$ by way of controlling the system's Hamiltonian?

Open-loop quantum brachistochrone problems

Closed transmon qubit system [Zhang et al. 2021]:

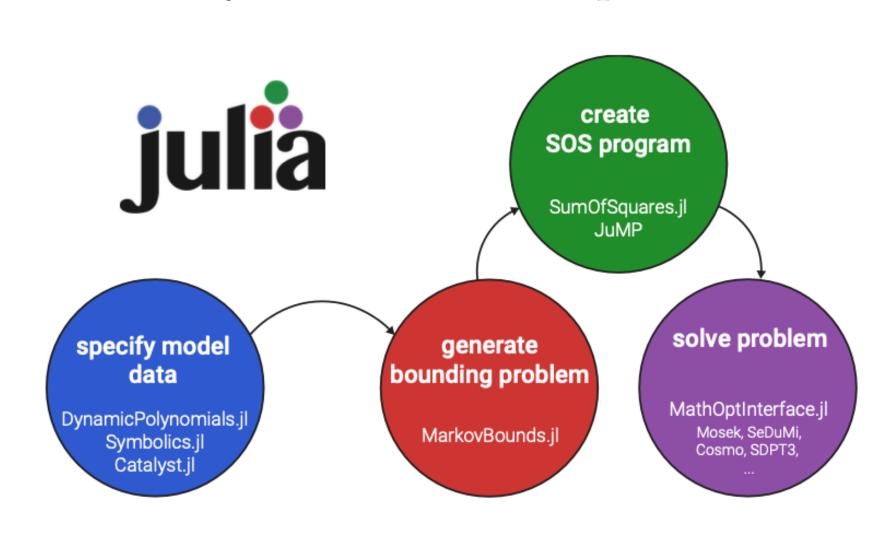
$$H(u) = \begin{bmatrix} \omega_1 & 0 & 0 \\ 0 & \omega_2 & 0 \\ 0 & 0 & \omega_3 \end{bmatrix} + u \begin{bmatrix} 0 & \mu_{01} & 0 \\ \mu_{10} & 0 & \mu_{12} \\ 0 & \mu_{21} & 0 \end{bmatrix}, \quad u \in [-1, 1]$$

- global bounds complement local gradient-based optimization methods
- the proposed SoS framework improves upon a range of quantum speed limits by accounting for technological constraints and detailed system information



MarkovBounds.jl

Julia's optimization ecosystem enables simple use



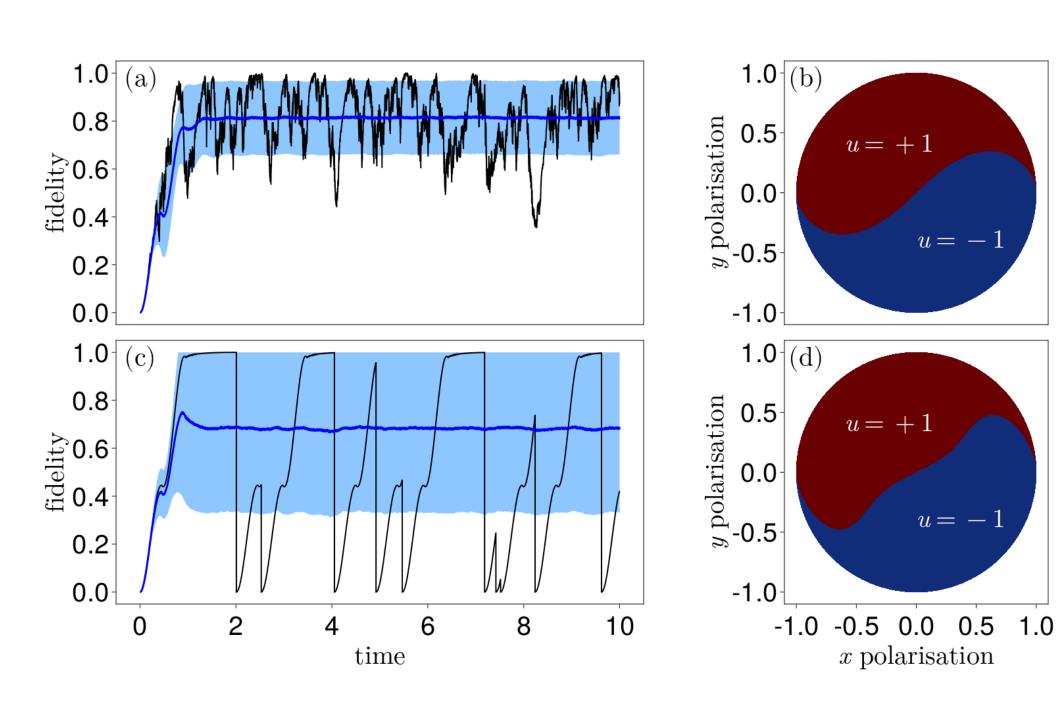
GitHub.com/FHoltorf/MarkovBounds.jl

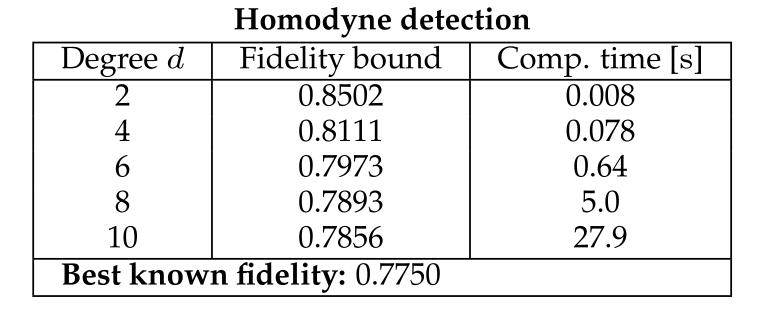
Closed-loop control of continuously observed qubit

Single qubit with σ_{-} measurement:

$$H(u) = \frac{\Delta}{2}\sigma_z + u\sigma_x, \quad u \in [-1, 1]$$

- approximate value function enables construction of certifiably near-optimal controllers
- computational proof of superiority of homodyne detection over photon counting





 Photon counting

 Degree d
 Fidelity bound
 Comp. time [s]

 2
 0.9602
 0.0043

 4
 0.7497
 0.031

 6
 0.7153
 0.180

 8
 0.6902
 1.67

 10
 0.6798
 14.9

 Best known fidelity: 0.6547

General framework

Quantum optimal control

Suppose a quantum system is described by a Hamiltonian,

$$H(u) = H_0 + \sum_{k=1}^{K} u_k H_k \,,$$

where H_k are the control fields with control drives $u = \begin{bmatrix} u_1 & \cdots & u_K \end{bmatrix} \in U = [-1, 1]^K$.

Under continuous observation, the jump-diffusion dynamics of the system state are governed by the quantum filtering equation

$$d\rho_t = \mathcal{L}(H(u_t))\rho_t dt + \mathcal{G}\rho_t d\xi_t.$$
 (QFE)

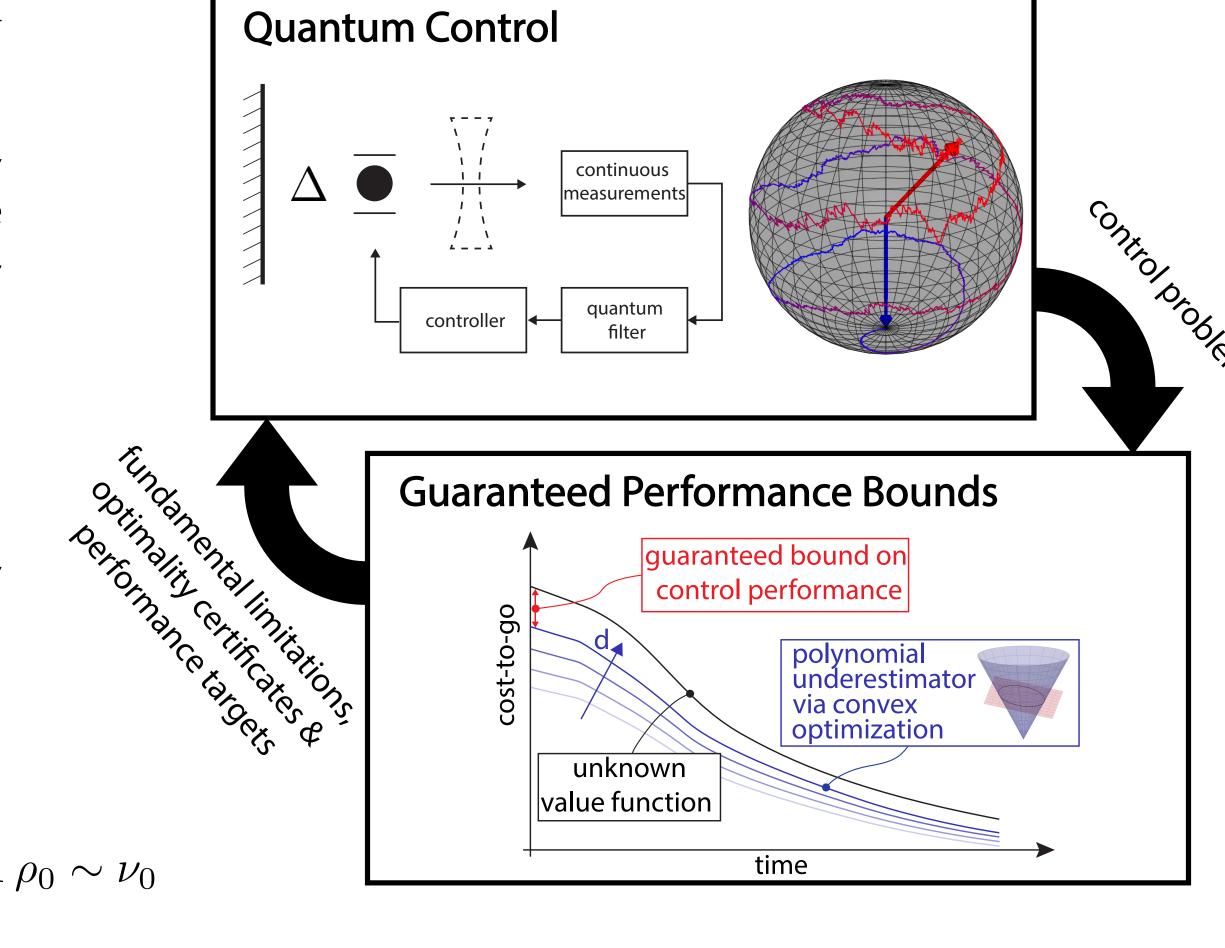
Goal

Bound the optimal performance J^* attainable by the best possible controller

$$J^* = \inf_{u_t \in U} \mathbb{E} \left[\int_0^T \ell(\rho_t, u_t) dt + m(\rho_T) \right]$$

s.t. ρ_t satisfies (QFE) on [0,T] with $\rho_0 \sim \nu_0$ u_t is an admissible controller.

IDEA: FIND MAXIMAL POLYNOMIAL HAMILTON-JACOBI-BELLMAN SUBSOLUTION VIA SUM-OF-SQUARES PROGRAMMING



Dynamic programming & SoS

The optimal value function w of the quantum optimal control problem is characterized as the maximal Hamilton-Jacobi-Bellman subsolution [Bhatt and Borkar, 1996]

$$J^* = \sup_{w \in \mathcal{C}^2([0,T] \times B)} \int_B w(0, \cdot) d\nu_0$$

s.t. $\mathcal{A}w + \ell \ge 0$ on $[0,T] \times B \times U$
 $w(T, \cdot) \le m$ on B

- SoS techniques [Lasserre, 2010] yield a hierarchy of tractable convex (SDP) restrictions by restricting w to be a polynomial of degree at most d.
- SDP restrictions furnish monotonically improving lower bounds for J^* as d increases; convergence is guaranteed if the value function is sufficiently smooth.
- polynomial underapproximators to the value function are a byproduct and can inform controller design.

References

Affiliations

