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Relevance

The speed at which quantum states can evolve
and the accuracy at which quantum states can be
prepared in the presence of noise put a limit on
the capabilities of quantum information technol-
ogy. Quantifying this limit is thus crucial for the
design of quantum devices and the evaluation of
their potential.

Example – Quantum Brachistochrone Problem

Given a quantum system, what is the minimal
time to evolve its ground state |ψ0⟩ to a target
state |ψtar⟩ by way of controlling the system’s
Hamiltonian?

General framework
Quantum optimal control
Suppose a quantum system is described by
a Hamiltonian,

H(u) = H0 +
K∑

k=1

ukHk ,

whereHk are the control fields with control
drives u =

[
u1 · · · uK

]
∈ U = [−1, 1]K .

Under continuous observation, the jump-
diffusion dynamics of the system state are
governed by the quantum filtering equa-
tion

dρt = L(H(ut))ρt dt+ Gρt dξt. (QFE)

Goal
Bound the optimal performance J∗ attain-
able by the best possible controller

J∗ = inf
ut∈U

E

[∫ T

0

ℓ(ρt, ut) dt+m(ρT )

]
s.t. ρt satisfies (QFE) on [0, T ] with ρ0 ∼ ν0

ut is an admissible controller.

IDEA: FIND MAXIMAL POLYNOMIAL
HAMILTON-JACOBI-BELLMAN SUBSOLUTION

VIA SUM-OF-SQUARES PROGRAMMING
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Dynamic programming & SoS
The optimal value function of the quantum
optimal control problem is characterized as
the maximal Hamilton-Jacobi-Bellman subso-
lution [Bhatt and Borkar, 1996]

J∗ = sup
w∈C2([0,T ]×B)

∫
B

w(0, · ) dν0

s.t. Aw + ℓ ≥ 0 on [0, T ]×B × U

w(T, · ) ≤ m on B

• SoS techniques [Lasserre, 2010] yield a
hierarchy of tractable convex (SDP) re-
strictions by restricting w to be a poly-
nomial of degree at most d.

• SDP restrictions furnish monotonically
improving lower bounds for J∗ as d in-
creases; convergence is guaranteed if the
value function is sufficiently smooth.

• polynomial underapproximators to the
value function are a byproduct and can
inform controller design.

Closed-loop control of continuously observed qubit
Single qubit with σ− measurement:

H(u) =
∆

2
σz + uσx, u ∈ [−1, 1]

• approximate value function enables
construction of certifiably near-optimal
controllers

• computational proof of superiority of
homodyne detection over photon counting

Homodyne detection
Degree d Fidelity bound Comp. time [s]

2 0.8502 0.008
4 0.8111 0.078
6 0.7973 0.64
8 0.7893 5.0
10 0.7856 27.9

Best known fidelity: 0.7750

Photon counting
Degree d Fidelity bound Comp. time [s]

2 0.9602 0.0043
4 0.7497 0.031
6 0.7153 0.180
8 0.6902 1.67
10 0.6798 14.9

Best known fidelity: 0.6547

Open-loop quantum brachistochrone problems
Closed transmon qubit system [Zhang et al. 2021]:

H(u) =

ω1 0 0
0 ω2 0
0 0 ω3

+ u

 0 µ01 0
µ10 0 µ12

0 µ21 0

 , u ∈ −[1, 1]

• global bounds complement local gradient-based
optimization methods

• the proposed SoS framework improves upon a
range of quantum speed limits by accounting for
technological constraints and detailed system
information

MarkovBounds.jl
Julia’s optimization

ecosystem enables simple use
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