Performance Bounds for Quantum Optimal Control

Flemming Holtorf, F. Schäfer, J. Arnold, C. Rackauckas, A. Edelman

Relevance

The speed at which quantum states can evolve and the accuracy at which quantum states can be prepared in the presence of noise put a limit on the capabilities of quantum information technology. Quantifying this limit is thus crucial for the design of quantum devices and the evaluation of their potential.

Example – Quantum Brachistochrone Problem

Given a quantum system, what is the minimal time to evolve its ground state $|\psi_0\rangle$ to a target state $|\psi_{tar}\rangle$ by way of controlling the system's Hamiltonian?

General framework

Quantum optimal control Suppose a quantum system is described by a Hamiltonian,

IDEA: FIND MAXIMAL POLYNOMIAL HAMILTON-JACOBI-BELLMAN SUBSOLUTION VIA SUM-OF-SQUARES PROGRAMMING

Dynamic programming & SoS

The optimal value function of the quantum optimal control problem is characterized as the maximal Hamilton-Jacobi-Bellman subsolution [Bhatt and Borkar, 1996]

where H_k are the control fields with control drives $u = \begin{bmatrix} u_1 & \cdots & u_K \end{bmatrix} \in U = \begin{bmatrix} -1, 1 \end{bmatrix}^K$.

Under continuous observation, the jumpdiffusion dynamics of the system state are governed by the quantum filtering equation

 $d\rho_t = \mathcal{L}(H(u_t))\rho_t \, dt + \mathcal{G}\rho_t \, d\xi_t. \quad \text{(QFE)}$

Goal

Bound the optimal performance J^* attainable by the *best possible controller*

$$J^{*} = \inf_{u_{t} \in U} \mathbb{E} \left[\int_{0}^{T} \ell(\rho_{t}, u_{t}) dt + m(\rho_{T}) \right]$$

s.t. ρ_{t} satisfies (QFE) on $[0, T]$ with ρ_{t}

 u_t is an admissible controller.

$$J^* = \sup_{w \in \mathcal{C}^2([0,T] \times B)} \int_B w(0, \cdot) d\nu_0$$

s.t. $\mathcal{A}w + \ell \ge 0$ on $[0,T] \times B \times U$
 $w(T, \cdot) \le m$ on B

- SoS techniques [Lasserre, 2010] yield a hierarchy of tractable convex (SDP) restrictions by restricting *w* to be a polynomial of degree at most *d*.
- SDP restrictions furnish monotonically improving lower bounds for *J** as *d* increases; convergence is guaranteed if the value function is sufficiently smooth.
- polynomial underapproximators to the value function are a byproduct and can inform controller design.

Closed-loop control of continuously observed qubit

Single qubit with σ_{-} measurement:

$$H(u) = \frac{\Delta}{2}\sigma_z + u\sigma_x, \quad u \in [-1, 1]$$

- approximate value function enables construction of certifiably near-optimal controllers
- computational proof of superiority of homodyne detection over photon counting

Homodyne detection				
Degree d	Fidelity bound	Comp. time [s]		
2	0.8502	0.008		
4	0.8111	0.078		
6	0.7973	0.64		
8	0.7893	5.0		
10	0.7856	27.9		
Best known fidelity: 0.7750				

Photon counting				
Degree d	Fidelity bound	Comp. time [s]		
2	0.9602	0.0043		
4	0.7497	0.031		
6	0.7153	0.180		
8	0.6902	1.67		
10	0.6798	14.9		
Best known fidelity: 0.6547				

Open-loop quantum brachistochrone problems

Closed transmon qubit system [Zhang et al. 2021]: $\begin{bmatrix} \omega_1 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} 0 & \mu_{01} & 0 \\ 0 & 0 & 0 \end{bmatrix}$ It (1, 1)

Mandelstam & Tamm 1945 Margolus & Levitin 1998 Arenz et al. 2017 Lee et al. 2018 D-matrix bound (Zhang et al. 2021)

MarkovBounds.jl

Julia's optimization ecosystem enables simple use

$H(u) = \begin{bmatrix} 0 & \omega_2 & 0 \\ 0 & 0 & \omega_3 \end{bmatrix} + u \begin{bmatrix} \mu_{10} & 0 & \mu_{12} \\ 0 & \mu_{21} & 0 \end{bmatrix}, \quad u \in -[1, 1]$

- global bounds complement local gradient-based optimization methods
- the proposed SoS framework improves upon a range of quantum speed limits by accounting for technological constraints and detailed system information

GitHub.com/FHoltorf/MarkovBounds.jl

References		Contacts	Affiliations
[Holtorf, Schäfer <i>et al.</i> , arXiv:2304.03366 (2023)] [Mandelstam, Tamm, J. Phys. USSR, 9 , 249 (1945)] [Margolus, Levitin, Physica, 120D , 188 (1998)]	[Lasserre, SIOPT, 11 (3), 796-817, 2002] [Bhatt, Borkar, Annals of Probability, 1531 (1996)] [Zhang <i>et al.</i> , PRL, 127 (11), 110506 (2021)]	holtorf@mit.edu franksch@mit.edu	Massachusetts Institute of Technology