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Transitions for varying temperature
The behavior of LLMs has been observed to exhibit rapid, qualitative 
changes reminiscent of phase transitions in response to variation in tuning 
parameters such as temperature or training epoch. While these transitions 
are of particular interest in developing a better understanding of LLMs, it 
remains an open question how to define and detect them systematically. 

The mathematical analogy between transformer-based LLMs and physical 
systems akin to the Ising (or more generally Potts) model suggests to draw 
on established insights from statistical physics to address these questions. 

Here [1], we adapt a technique [3] for the automated detection of phase 
transitions in physical systems to the context of LLMs. In broad strokes, the 
proposed technique quantifies changes in the entire output distribution of 
LLMs via statistical distances, giving rise to universal measures of 
behavioral change that avoid the subjectivity and pitfalls of adhoc-defined 
indicators.

1

Algorithm 1 For text samples x distributed according to a temperature-dependent dis-

tribution P (·|T ) induced by a language model, the g-dissimilarity between neighboring points

Tn and Tn+1 on a grid of temperatures is given by Dg = 1
2

P
j=n,n+1 Ex⇠P (·|Tj)

g [p(Tj |x)],

where p(Tj |x) =
P (x|Tj)

P (x|Tn)+P (x|Tn+1) . For a language model “model” and “g function” g, it

is estimated as:
Input: model, n, Tn, Tn+1, nsamples, g function

Output: g-dissimilarity Dg

1: Dg = 0

2: for i in {1, . . . , nsamples} do

3: for j in {n, n + 1} do

4: sample = model.generate(temperature=Tj)

5: pn = model.evaluate probability(sample, temperature=Tn)

6: pn+1 = model.evaluate probability(sample, temperature=Tn+1)

7: Dg = Dg + g function(pj/(pn + pn+1))

8: end for

9: end for

10: Dg = Dg/(2nsamples)

FIG. 1: Additional results for integer scan (Fig. 1) using the same numerical settings with the Mistral-7B-Instruct model

(full lines) and the Mistral-7B-base model (dashed lines). (Left) Linear dissimilarity as a function of T �X, where X takes

on a representative range of values (see legend). (Right) Linear dissimilarity as a function of T for various rephrasings of the

original prompt ”T is larger than 42. True or False?” obtained from ChatGPT4 (numbering in the legend refers to di↵erent

prompt variations). Examples include ”Is T greater than 42?” and ”Would you consider T to be more than 42?”. In both

plots, the peak for the instruct models is always at either X � 0.5 or X +0.5, as expected (where X = 42 for the right plot).

FIG. 2: Additional preliminary results for temperature scan [Fig. 3(a)]. (a) Heat capacity (normalized by the number of

output tokens noutputs) as a function of temperature for the Pythia-70M model prompted with ”There’s measuring the

drapes, and then there’s measuring the drapes on a house you haven’t bought, a” from OpenWebText. The transition

becomes sharper and moves toward T = 1 as the number of output tokens is increased. (b) A similar trend is observed for

the linear dissimilarity. (c) Results for various Pythia model sizes ranging from 70M to 1B parameters with fixed

noutputs = 50. Signatures of the transition are present across all model sizes. (d) Heat capacity (normalized by the number

of output tokens noutputs) as a function of temperature for the Pythia-70M model prompted with ”There’s measuring the

drapes, and then there’s measuring the drapes on a house you haven’t bought, a” from OpenWebText. Same trend as in

panel a (note the similar y-scale).
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Mistral From the Mistral family, we consider the base model Mistral-7B-v0.1 with 7.3B parameters
and the corresponding fine-tuned Mistral-7B-Instruct model [82] released in 2023.

Llama Llama 3 [83] from Meta AI was released in 2024. We consider both the Llama-3 8B
parameter base model and NVIDIA’s chat-tuned Llama3-ChatQA-1.5-8B [107]. For the chat model
we use accordingly formatted inputs.

3 Results

In the following, we will explore all three fundamental ways in which a parameter T may influence
the output distribution of a language model: (i) As a variable within the input prompt, we scan
through integers injected to the prompt in Sec. 3.1. (ii) As a hyperparameter controlling how a trained
language model is applied, we vary the temperature in Sec. 3.2. (iii) As a training hyperparameter of
the language model, we vary the number of training epochs in Sec. 3.3.

3.1 Transitions as a Function of a Variable in the Prompt

Figure 1: Mistral model applied to the integer ordering prompt. (a) Different g-dissimilarities with
L = 3. (b) Linear dissimilarity for different L-values. [Number of text outputs generated per
parameter value T : 10280. Number of generated output tokens: 10. Error bars indicate standard error
of the mean over 4 batches, each with batch size 2056.]

As an introduction, we start with the simplest case: The parameter T to be varied is a particular
part of the prompt, and all parameters of the language model itself are fixed. As a first such prompt,
consider “T is larger than 42. True or False?” with an integer T as the control parameter. An LLM
that understands the order of integers should output very different answers for T < 42 versus T > 42,
i.e., its distribution over outputs should change drastically around T = 42. Thus, in such a case we
expect the dissimilarities to show a clear peak around T = 42.

Figure 1(a) shows dissimilarities based on various g-functions for the Mistral-7B-Instruct model [82].
All dissimilarities show a clear peak around T = 42, whereas they are relatively flat otherwise. This
is a clear example of an abrupt transition between two distinct phases of behaviors of an LLM as
a function of a tunable parameter. As compared to the linear dissimilarity, the logarithm-based JS
divergence is arguably a bit sharper in that it decays more rapidly to baseline 0. The TV distance’s
peak is the broadest due to the min function appearing in its g-function. In the following, we will
focus on the linear dissimilarity as a compromise between sensitivity and numerical stability.

The transition is also clearly visible using different L settings, see Fig. 1(b). Smaller L values are
closer to the Fisher information limit, while larger values generally lead to higher distinguishability of
distributions and therefore larger peaks at transition points. As we will see in more detail in Sec. 3.3,
they can also be less susceptible to outliers due to the averaging over several parameter points.

Interestingly, when performing the same analysis on base models such as the Llama3-8B and Mistral
base models, as well as Pythia models [81] of various sizes, the resulting linear dissimilarity is
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In practice: Pseudo-code implementation of 
sampling from LLMs at different temperatures

• rapid changes in the distribution of weights during training can coincide with transitions in
the text output that are present across many prompts.

• different prompts result in different transition times during training, suggesting that distinct
type of behavior can be learned rapidly at distinct times in training.

2 Methodology

2.1 Quantifying Dissimilarity between Distributions

In this work, we view phase transitions as rapid changes in the probability distribution P (·|T )
governing the state of the system x ⇠ P (·|T ) as the control parameter T is varied.2 That is, values
of the parameter at which the distribution changes strongly are considered critical points where phase
transitions occur. While it is possible to generalize our approach to distributions conditioned on
multiple control parameters (see [73, 75]), for simplicity we consider the one-dimensional scenario
in the following.

We quantify the rate of change using f -divergences [84], as they have particularly nice properties,
such as satisfying the data processing inequality. Given a convex function f : R�0 ! R with
f(1) = 0, the corresponding f -divergence is a statistical distance defined as

Df [p, q] =
X

x

q(x)f

✓
p(x)

q(x)

◆
� 0. (1)

Prominent examples of f -divergences include the Kullback-Leibler (KL) divergence, the Jensen-
Shannon (JS) divergence, which corresponds to a symmetrized and smoothened version of the KL
divergence, as well as the total variation (TV) distance. Ideally, we would also like the statistical
distance we choose to be symmetric D[p, q] = D[q, p]. This condition is only satisfied by the TV
distance and the JS divergence among the examples above.

Hence, in this work, we will focus on the TV distance

DTV[p, q] =
1

2

X

x

|p(x)� q(x)| (2)

corresponding to f(x) = 1
2 |1� x|, as well as the JS divergence
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2
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, where DKL is the KL divergence.

The TV distance and the JS divergence have also had tremendous success in detecting phase transitions
in physical systems without prior system knowledge under the name of “learning-by-confusion” [55,
85–94, 72, 95–100, 73, 75, 74, 101].3

2.2 Detecting Phase Transitions

Having defined appropriate notions of distance between probability distributions, we now describe
their use to detect phase transitions: Consider a sampled set T of control parameter values T , forming
a uniform one-dimensional grid. For each T ⇤ lying halfway in between grid points, we assess whether
it is a critical point by computing a dissimilarity score D(T ⇤) = D [Pleft(·|T ⇤), Pright(·|T ⇤)] between
the distributions underlying the segments �left(T ⇤) to the left and �right(T ⇤) to the right of T ⇤. Denot-
ing the cardinality as | · |, we can write these probabilities as Pi(·|T ⇤) = 1

|�i(T⇤)|
P

T2�i(T⇤) P (·|T )

2This definition encompasses phase transitions in physics, i.e., abrupt changes in the distribution governing
large-scale systems of interacting constituents.

3Note that both the TV distance and the JS divergence form lower bounds to the KL divergence and other
f -divergence, such as the �2 divergence: DJS[p, q]  DTV[p, q] 

p
DKL[p, q] 

p
D�2 [p, q] [102]. In

this sense, detecting a large dissimilarity in terms of the TV distance or the JS divergence also signals a large
dissimilarity in other measures.
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example:  
Jensen-Shannon divergence as symmetrized Kullback-Leibler divergence 

Transitions in Stable Diffusion with prompt f"technology of the year {year}" for various years. 
here, no direct access to the underlying probability distribution is available and we resort to "learning-by-confusion". 
The error here is proportional to minus the total variation distance, which is a f-divergence, so valleys indicate transitions. 
see Reference [2] for details.

Generalization to models without  
tractable densities: Transitions in Stable Diffusion

not feature phase transitions in the physical sense, the learning-by-confusion scheme can be used to
identify points in parameter space at which the data distribution changes rapidly. Note that no prior
benchmark is available for this data and the predicted change points cannot be verified by theory.
As the images have complex features comparable to typical image datasets, we load the pretrained
ResNet-50 [30] from PyTorch [31], and exchange its final layer to fit our task, see Appendix A.1.1
for implementation details.

Figure 3 shows (at least) three major local minima indicating rapid changes in the image dataset; one
in-between the years 1929 and 1930, a second, broader one in the 1990s, and a third one in-between
2021 and 2022. The Stable Diffusion model has only encountered images of actual technology from
before and around 2022 in its training dataset LAION-5B [32], which may explain the third minimum.
Due to the small dataset size and the resulting challenges in generalization, the signal is generally
less reliable close to the edges.

1920 1940 1960 1980 2000 2020 2040
year

0.05

0.10

er
ro

r

Figure 3: Error rate obtained using multi-task learning-by-confusion for the Stable Diffusion dataset
as a function of ✓ in prompt "technology of the year ✓". The colored lines depict the results obtained
by training on three separate data sets, each averaged over 10 runs as described in Appendix A.1 in
more detail. The black line represents their mean.

Figure 2(b) shows the error at representative points, the extrema at nodes 29, 56, 121 (corresponding
to the transitions between years 1929-1930, 1956-1957, and 2021-2022) as a function of the training
epoch for a single-task and multi-task network with otherwise identical network architecture and
training parameters. As there is no significant overhead, the speedup of the multi-task approach is
approximately given by the number of grid separators (here K = 149).

4 Discussion and Conclusion

In the limit of infinite model capacity, both multi-task and single-task learning models ultimately
yield the same predictions, because the multi-task loss corresponds to the average of the single-task
losses. However, in real-world scenarios where model expressivity, training time, and data are limited,
the learning behavior depends on the particulars of the model and dataset at hand.

For the Ising dataset analyzed with a shallow 4-layer convolutional net, we observed some differences
in predictions between the single-task and multi-task architectures, but not near the critical point
where it would matter most. At the critical point, we found a minor overhead with respect to the ideal
speedup linear in the number of grid points.

The analysis of the Stable Diffusion dataset with the 50-layer ResNet-50 demonstrates the viability of
the multi-task learning-by-confusion algorithm to reveal rapid changes in the distribution of complex
datasets for which there does not exist any theoretical description. In this case, we found no signs of
an overhead.

In conclusion, we find the multi-task implementation of the learning-by-confusion algorithm to
provide much faster execution on large parameter grids as compared to its single-task version.

Broader Impact

The characterization of phases of matter and the study of critical phenomena are of great importance
in physics. Our work contributes a faster variant of a highly popular unsupervised learning method
for the data-driven detection of phase transitions.
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Figure 3: Temperature transitions of Pythia 70M model in response to the prompt “There’s measuring
the drapes, and then there’s measuring the drapes on a house you haven’t bought, a” – an excerpt from
OpenWebText [111]. Linear dissimilarity measure (L = 5) is shown in black. Heat capacity is shown
in red. Dashed lines indicate local maxima, i.e., predicted critical points. Shaded regions indicate the
error bands. (a) Temperature range [10�4, 2]. (b) Zoomed-in range [10�4, 0.2] near T = 0. [Number
of text outputs generated per parameter value T : 20480. Number of generated output tokens: 10.
Error bars indicate standard error of the mean over 4 batches, each with batch size 5120.]

(see Appendix C for details). We view the LLM as such a thermal system at varying temperature
where the negative logarithmic probability at T = 1, � logP (x|T = 1), takes on the role of the
energy E of a given text output x. In physical systems governed by Boltzmann distributions, thermal
phase transitions can be detected as peaks in the heat capacity C(T ) = @Ex⇠P (·|T ) [E(x)] /@T , i.e.,
by looking at the temperature derivative of the mean total energy [112].

Figure 3 shows that the locations of peaks (i.e., dips) in these quantities are close to the critical points
highlighted by our method. Note that in the LLM case, the text outputs are not truly sampled from a
Boltzmann distribution governed by the total energy. Instead, each individual token is drawn from
a Boltzmann distribution for its individual energy conditioned on the previous tokens only. This
procedure corresponds to a greedy sampling strategy. The resulting sampling mismatch can lead
to the counterintuitive phenomenon of the mean energy of the system increasing with decreasing
temperature corresponding to a negative “heat capacity”, cf. Fig. 3(b).

The intermediate temperature transition at T ⇤
2 may be reminiscent of the Schottky anomaly [112]

occurring in systems with a finite number of energy levels. As such, this phenomenon is perhaps
better described as a crossover rather than a phase transition in the Ehrenfest sense. In particular,
we also observed such a transition for a basic language model that samples words according to their
overall frequency without taking into account any word-to-word interaction.

In Fig. 3 we have investigated the output distributions corresponding to a specific prompt. While we
find that the temperature behavior is strongly dependent on the prompt, there seems to be a trend:
many distinct prompts lead to a transition at T ⇡ 1 (i.e., on the order of the natural temperature
scale), at T ⌧ 1, or both.

3.3 Transitions as a Function of the Training Epoch

Finally, we search for transitions as a function of the training epoch, i.e., we compare the output
distributions of models at different stages during training and see whether there are certain epochs
at which these statistics change drastically. Such temporal analyses are rare given that they require
access to models at checkpoints during training [113, 114, 36]. Here, we analyze the Pythia suite of
models for which such checkpoints are publicly available.

Ref. [115] analyzed the weight distribution of the Pythia models, and similar weight-based analyses
of other NNs during training have also been performed in previous works [7, 38, 36]. In order to
study the previously observed transitions [115], we analyze changes in the weight distributions in
the same manner as for the output distributions (see Sec. 2), i.e., to characterize phase transitions
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Pythia LLM phase transition as a function of temperature at temperatures close to (a) 1 and (b) 0.

 -divergences: Measuring distances  
between probability distributions
f

Mistral model applied to integer ordering prompt varying T. 
 (a) Different g-dissimilarities with length parameter L = 3. (b) Linear dissimilarity for different values of length parameter L.

f-divergences are mappable to corresponding  g-dissimilarities.

Figure 2: Benchmarking of various models using the linear dissimilarity with L = 3. (a) Test of
ability to compare integers in value. (b) Bare integers as prompt reveals transition in tokenizer
encoding. [Same numerical settings as in Fig 1.]

flat, signaling the absence of any transition [see Fig. 2(a)]. In contrast to Mistral-7B-Instruct and
NVIDIA’s chat-tuned Llama3-8B, these models do not show a clear peak around T = 42.

A transition of a different origin can be observed in Fig. 2(b), where the LLMs are probed using the
prompt “T” with T again being an integer. Interestingly, all Pythia models show a peak between
T = 2020 and T = 2021. This behavioral transition may originate from a transition in the tokenizers
of these models, which encode numbers in a range below T = 2021 with a single token and numbers
in a range at and above T = 2021 with two. This explanation is corroborated by the absence of the
transition around T = 2021 for the Llama and Mistral models, whose tokenizers translate a number
into tokens following rules that are independent of the number’s frequency.

The Mistral models and the base Llama3-8B model show a smaller peak around T = 2023/2024.
Both models have only encountered training data from before and around that time given their release
date in 2023/2024, which may explain the peak. This transition is absent in the Pythia models.

3.2 Transitions as a Function of the Model’s Temperature

Next, we consider transitions as a function of the temperature hyperparameter T controlling how the
logits z are converted to probabilities

pi =
ezi/TP
j e

zj/T
(6)

for next-token prediction where the sum runs over all possible tokens. Per construction, at T = 1
language models predict probabilities pi to approximate the distribution to be learned. In the limit
T ! 0, the model deterministically picks the most likely next token in each step. For T ! 1 the
model samples the next token uniformly.

This scenario somewhat resembles a system of a one-dimensional lattice of spins that are coupled via
long-range interactions, i.e., the one-dimensional Ising model [108, 109], which has an order-disorder
phase transition. In our case, the tokens take the role of the spins, and the coupling is mediated via
the transformer’s attention mechanism.

In Fig. 3, the dissimilarity shows two distinct peaks corresponding to two transition points: one at a
very low temperature T ⇤

1 ⇡ 0.02 and one at an intermediate temperature T ⇤
2 ⇡ 0.5. Intuitively, these

two points mark transitions between three distinct phases of behavior: “frozen” at low temperatures
T < T ⇤

1 , “unfrozen and sensible” at intermediate temperatures T ⇤
1 < T < T ⇤

2 , and “random” at high
temperatures T ⇤

2 < T . The transition at low temperatures has recently been investigated in Ref. [110]
for GPT-2 using physics-inspired quantities. Moreover, they speculated on the existence of a phase
transition at higher temperatures.

We perform an analysis independent of the dissimilarity-based indicators by taking inspiration from
statistical mechanics, where the state of thermal systems is governed by the Boltzmann distribution
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Benchmarking various models using the linear dissimilarity with L=3. 
(a) Test of ability to compare integers in value. (b) Bare integers as prompt reveals transition in tokenizer encoding.

Transitions for varying training epoch

using dissimilarities. The lists of model weights are converted to distributions via histogram binning
(10000 bins for the range -3 to 3).

The results for L = 6 are shown in Fig. 4(a) as colored lines, each corresponding to the distribution
of the weights of a particular QKV layer. Different layers show transitions at roughly 20K (layer 5),
40K (layers 3), 50K (layer 4), and 80K (layer 4) epochs. We also observe a large peak around epoch 0,
i.e., at the start of the training, highlighting that the LLM learns most rapidly at the beginning stages.
In the long run, the dissimilarity curves approach 0, signaling that overall the weight distributions
become less and less distinguishable.

Figure 4: Linear dissimilarity by epoch, with checkpoints taken every 1000 epochs. (a) Computed at
L = 6 for both weights and responses to 20 random prompts from OpenWebText (gray) and 7 short
prompts (black) shown in panel (b). (b) Computed at L = 1 for several prompts. For reference, the
mean linear dissimilarity over short prompts and OpenWebText prompts with L = 1 is also shown.
[Number of text outputs generated per parameter value T and prompt: 1536. Number of generated
output tokens: 10. Error bars indicate the standard error of the mean over all corresponding prompts.
Error bars for the individual prompts in panel (b) are almost negligible and thus omitted to avoid
visual clutter.]

Complementarily, in the same plot, we show dissimilarities derived from the LLM output distribu-
tions. The grey line corresponds to an average of the dissimilarities obtained by using entries from
OpenWebText [111] (which serves as a proxy for the Pythia training dataset) as prompts. The black
line corresponds to the average of results obtained from a selection of single-token prompts [see
also panel (b)]. Both dissimilarity curves show a peak around epoch 0 as well as a peak around 80K
epochs that is potentially related to the rapid change of layer 4 around the same time.

Figure 4(b) shows dissimilarities as a function of the training epoch for models queried with short,
generic prompts (“ ”, “0”, “I”, “?”, “1”, “You”, and “!”) at L = 1. These short prompts were selected
to be as general as possible and the associated output distributions seem more sensitive as compared
to the long examples from OpenWebText: their mean dissimilarity shows clear peaks near epochs
20K, 40K, and 80K. These correspond to outliers where the output distribution changes severely only
at a single point and returns back (close) to its original behavior immediately after. As such, these
peaks do not mark transitions between two macroscopic phases of behavior. We further verified this
outlier behavior by inspecting the dissimilarity between the points directly to the left and right of the
potential outlier. It remains an open question if these outliers are linked to the transitions observed in
the layer weights shown in panel (a).
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