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Machine learning phase transitions:
Connections to the Fisher information
Julian Arnold,1 Niels Lörch,1 Flemming Holtorf,2 and Frank Schäfer 2

Automated detection of phase transitions from data
requires minimal explicit knowledge of the system’s underlying physics and could enable the discovery of new phases of matter
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Approach 1 (“Supervised learning”)
• pick a set of points Γ0 and Γ1 lying within

each of the two phases

• each sample ξ drawn in Γy is assigned the
label y

⇒ I1(γ) =
∣∣∣ ∂ŷ(γ)∂γ

∣∣∣,
where ŷ(γ) = Eξ∼P (·|γ) [ŷ(ξ)]

Approach 2 (“Learning by confusion”)
• split parameter space at γ into two

neighboring regions Γ0 and Γ1

• each sample ξ drawn in Γy is assigned the
label y

⇒ I2(γ) = 1− 2perr(γ),
where perr(γ) is mean unbiased error rate

Approach 3 (“Prediction-based method”)
• each sample ξ drawn at γ is assigned the label
y = γ

⇒ I3(γ) =
∂γ̂(γ)/∂γ

σ(γ)
, where σ(γ) is standard

deviation of estimator at γ

Relation to the Fisher information
Classical Fisher information matrix F(γ) measures how quickly a probability distribution P (·|γ) changes w.r.t. its parameters γ

Fi,j(γ) = Fi,j [P (·|γ)] = Eξ∼P (·|γ)

[(
∂ log [P (·|γ)]

∂γi

)(
∂ log [P (·|γ)]

∂γj

)]
Main result:

Machine-learned indicators of phase transitions are underapproximators
to the square root of the system’s (classical) Fisher information

I(γ) ≤
√
tr [F(γ)]

Proof sketch:

Approach 1
use Cauchy-Schwarz inequality with constraints

⇒ indicator is maximal iff ŷ is perfectly correlated
with score ∂ log[P (·|γ)]

∂γ

Approach 2
equivalent to single-shot binary symmetric

hypothesis testing task

⇒ Iopt2 = TV[PI, PII] =
1
2

∑
ξ |PI(ξ)− PII(ξ)|

⇒ related to Fisher information to 1st order
TV[P (·|γ), P (·|γ+δγ)] ≤ 1

2

√
F(γ)δγ+O(δγ2)

Approach 3
equivalent to parameter estimation task

⇒ apply Cramér-Rao bound

σ2(γ) ≥ (∂ψ(γ)/∂γ)2

F(γ)
,

where σ2 and ψ are variance and expected
value of estimator ŷ

Classical example: 2D Ising model
Hamiltonian H = −J

∑
⟨ij⟩ σ

z
i σ

z
j

⇒ consider system in thermal state ρ(γ) = e−H/kBT /Z with
γ = kBT/J measured in z-basis: P (z|γ) = tr [|z⟩⟨z|ρ(γ)]

⇒ Fisher information is proportional to heat capacity C:
F(γ) = CJ2/k3
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Quantum example: 1D TFIM
Hamiltonian H = −J
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⇒ consider system in ground state |Ψ(γ)⟩ with γ = h/J measured in
x-basis: P (x|γ) = |⟨x|Ψ(γ)⟩|2

⇒ indicators also lower-bound square root of quantum
Fisher information FQ(γ) = max{Πξ}ξ F (tr [Πξρ(γ)])
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