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Machine learning phase transitions: D XK University

Connections to the Fisher information
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Automated detection of phase transitions from data

requires minimal explicit knowledge of the system’s underlying physics and could enable the discovery of new phases of matter
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Approach 1 (“Supervised learning”) Approach 2 (“Learning by confusion”) Approach 3 (“Prediction-based method”)

e pick a set of points I'g and I'; lying within e split parameter space at - into two * each sample £ drawn at y is assigned the label
each of the two phases neighboring regions I'g and I'y Yy =

e each sample £ drawn in I'y, is assigned the e each sample € drawn in 'y, is assigned the
label y label y
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= Li(y) = % / = I3(7) =1 — 2perr (7), = I3(v) = '7((;2)7/) L, where o(v) is standard

where §(v) = E¢op(.|~) [9(8)] where perr(7y) is mean unbiased error rate deviation of estimator at ~

Relation to the Fisher information

Classical Fisher information matrix J(v) measures how quickly a probability distribution P(-|v) changes w.r.t. its parameters ~

Fij(v) = Fi; [P(17)] = Eempiim _(mog({[}si(-\’)’)]) (3log({£§)j(-|’)’)]>_

Main result:

Machine-learned indicators of phase transitions are underapproximators
to the square root of the system’s (classical) Fisher information
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Proof sketch:
Approach 1 Approach 2 Approach 3
use Cauchy-Schwarz inequality with constraints equivalent to single-shot binary symmetric equivalent to parameter estimation task
= indicator is maximal iff § is perfectly correlated hypothesis testing task = apply Cramér-Rao bound i
with score Z1°8lCC17)] = I = TV[P, Pl = 5 X¢ |Pi(&) — Pu(€)] o?(y) > Lo
= related to Fisher informatlon to 15* order where 02 and ¢ are variance and expected
TVIP(:|7), P(-|v+67)] < 2 V/F(v)év+ O(677%) value of estimator ¥

Classical example: 2D Ising model Quantum example: 1D TFIM

Hamiltonian H = —J ., 0707 Hamiltonian H = —J » ;. 0705 —h)_;0f
= consider system in thermal state p(v) = e~ H/kBT /7 with = consider system in ground stzate | W (v)) with v = h/J measured in
~ = kgT'/J measured in z-basis: P(z|y) = tr[|z)(z|p(7)] z-basis: P(z|y) = [(2[¥ (7))
= Fisher information is proportional to heat capacity C: = indicators also lower-bound square root of quantum
F(y)=CJ?/kLT? Fisher information F©(v) = max .}, + (tr [[Igp(7)])
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