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Abstract
The characterization of phases of matter and the study of critical phenomena are of great importance in In this work (2], we propose a faster implementation based on a multi-tasking approach where only a
physics. One of the most popular machine learning methods for the data-driven detection of phase single classifier must be trained. Moreover, by revealing structure in the output images of the Stable
transitions is Learning-By-Confusion |1|. Up to now, for a given system it was necessary to train a binary Diffusion model, we demonstrate its application beyond physics.

classifier for each tentative position of the phase transition in parameter space.

Detection of Phase Transitions from Data

Setup and Task: Learning-by-Confusion Algorithm [1]: Result:

* The system can occupy a multitude of states & the probability of e Pick a tentative candidate for the critical temperature 7}, and

each state depends on a parameter such as temperature 7. label the samples with the resulting phase. * The candidate for the critical temperature that resulteel i.n the
Prototypical example: Ising model. lowest error rate for the classifier corresponds to a splitting where
* Train a binary classifier on this data and the two sets are most distinguishable. This is your best guess for
e Given: Samples  randomly drawn at different temperatures. evaluate its error rate pj'". the critical temperature.

Task: Find the critical temperature where the system transitions

from one state to another. e Repeat for every possible splitting k£ € [0, K — 1]

of the parameter space. 1
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Q: where is the critical temperature?  tentative splitting (k = 1)
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Multi-Task Architecture Benchmark

Result on Stable Diffusion Dataset

Multi-Task Approach: Train a single multi-class classifier on all possible splittings simultaneously instead of The overhead in the number of training epochs of Change point detection in Stable Diffusion dataset.
a distinct binary classifier for each possibility, which would correspond to the single-task approach. multi-task approach compared to single-task Here, no prior theory is available to predict the
approach is mostly negligible. location of transition points.
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